Corwin (realcorwin) wrote,
Corwin
realcorwin

Природа математики - 1

Недавнее обсуждение уважаемыми falcao, dennett и компанией теоремы Геделя о неполноте подвигло меня вспомнить о когда-то прочитанном o Геделе в частности и о природе математике вообще у Дойча в "Структуре реальности". Предполагая, что не каждый, интересующийся данной темой, найдет время и место читать 9 глав Дойча, чтобы дойти до 10-ой, "математической", я решил сделать "облегченную" выжимку, которая была бы доступна более-менее любому желающему в этой теме разобраться.

Расчитываю уложиться в 3 части. Сегодня - первая часть.


Существуют ли вообще абстрактные нефизические категории? Очевидно, что числа, физические законы и т. д. действительно "существуют" в некотором смысле и не существуют в другом. Переформулируем наш вопрос следующим образом: дает ли заданная абстракция ответную реакцию сложным, автономным образом. Например, математики характеризуют "натуральные числа" 1, 2, 3,... - прежде всего - точным определением:

1 - это натуральное число.

За каждым натуральным числом следует только одно число, которое также является натуральным.

1 не следует ни за каким натуральным числом.

Подобные определения - это попытки абстрактного выражения интуитивного физического понятия последовательных значений дискретной величины. Арифметические действия, например, умножение и сложение, а также последующие понятия, подобные понятию простого числа, в этом случае определяют, ссылаясь на "натуральные числа". Но создав абстрактные "натуральные числа" через это определение и поняв их через эту интуицию, мы обнаруживаем, что осталось гораздо больше того, что мы все еще не понимаем о них. Определение простого числа раз и навсегда устанавливает, какие числа являются простыми, а какие не являются. Но понимание того, какие числа являются простыми, - например, продолжается ли последовательность простых чисел бесконечно, как они сгруппированы, насколько и почему они "случайны", - влечет за собой новое понимание и изобилие новых объяснений. В действительности оказывается, что сама теория чисел - это целый мир (этот термин используют часто). Для более полного понимания чисел мы должны определить множество новых классов абстрактных категорий и постулировать много новых структур и связей между этими структурами. Мы обнаруживаем, что некоторые подобные структуры связаны с интуицией другого рода, которой мы уже обладаем, но которая вопреки этому не имеет ничего общего с числами - например, симметрия, вращение, континуум, множества, бесконечность и многое другое. Таким образом, абстрактные математические категории, с которыми, как нам кажется, мы знакомы, тем не менее, могут удивить или разочаровать нас. Они могут неожиданно возникнуть в новых нарядах или масках. Они могут быть необъяснимы, а впоследствии подойти под новое объяснение. Таким образом, они являются сложными и автономными, и мы должны сделать вывод об их реальности. Поскольку мы не можем понять их ни как часть себя, ни как часть чего-либо еще, что мы уже понимаем, но можем понять их как независимые категории, следует сделать вывод, что они являются реальными, независимыми категориями.

Тем не менее, абстрактные категории неосязаемы. Они не дают ответной физической реакции так, как это делает камень (отдача в ноге пнувшего), поэтому эксперимент и наблюдение не могут играть в математике такую же роль, какую они играют в науке. В математике такую роль играет доказательство. Простые числа оказывают ответное воздействие, когда мы доказываем что-то неожиданное относительно них, особенно, если мы можем пойти дальше и объяснить это. С традиционной точки зрения ключевое различие между доказательством и экспериментом состоит в том, что доказательство не ссылается на физический мир. Мы можем осуществить доказательство в своем собственном разуме или внутри генератора виртуальной реальности, который передает среду с неправильной физикой. Единственное условие заключается в том, что мы следуем правилам математического вывода, а потому должны получить тот же самый ответ, что и кто-либо еще. И вновь широко распространено мнение, что, не считая возможности появления грубых ошибок, когда мы доказали что-либо, мы абсолютно определенно знаем, что это истина.

Математики весьма гордятся этой абсолютной определенностью, а ученые склонны немного этому завидовать. Дело в том; что в науке невозможно быть определенным относительно какого-либо высказывания. Неважно, насколько хорошо чьи-либо теории объясняют существующие наблюдения, в любой момент кто-то может предоставить новое, необъяснимое наблюдение, которое поставит под сомнение всю существующую объяснительную структуру. Хуже того, кто-то может достичь лучшего понимания, которое объясняет не только все существующие наблюдения, но и то, почему предыдущие объяснения казались подходящими, но, несмотря на это, были весьма ошибочными. Галилео, например, обнаружил новое объяснение векового наблюдения, что земля под нашими ногами находится в состоянии покоя, объяснение, которое влекло за собой идею о том, что в действительности земля движется. Виртуальная реальность - которая может сделать так, что одна среда будет казаться другой - подчеркивает тот факт, что когда наблюдение выступает как высший судья теорий, никогда не может возникнуть хоть какая-то определенность, что существующее объяснение, каким бы очевидным оно ни было, хотя бы отдаленно является истиной. Но когда в качестве судьи выступает доказательство, определенность считается возможной.

Говорят, что правила логики впервые сформулировали, надеясь, что они обеспечат объективный и обоснованный метод разрешения всех споров. Эту надежду невозможно оправдать. Изучение самой логики открыло, что область действия логической дедукции как средства раскрытия истины жестко ограничена. При наличии существующих допущений о мире можно сделать выводы дедуктивно; но эти выводы ничуть не более обоснованны, чем допущения. Единственные высказывания, которые может доказать логика, не прибегая к допущениям, - это тавтологии - такие утверждения, как "все планеты - это планеты", которые ничего не утверждают. В частности, все реальные научные вопросы находятся за пределами той области, где можно уладить споры с помощью одной логики. Однако считается, что математика находится в пределах этой области. Таким образом, математики ищут абсолютную, но абстрактную истину, в то время как ученые утешают себя мыслью, что они могут обрести реальное и полезное знание физического мира. Но они должны принять, что это знание не имеет гарантий. Оно вечно экспериментально и вечно подвержено ошибкам. Идея о том, что науку характеризует "индукция", метод доказательства, который считается аналогом дедукции, но чуть более подверженным ошибкам, - это попытка извлечь все возможное из этого постижимого второсортного статуса научного знания. Вместо дедуктивно доказанных определенностей, возможно, мы удовольствуемся индуктивно доказанными "почти-определенностями".

Как я уже сказал, не существует такого метода доказательства как "индукция". Идея доказательства каким-то образом достигнутой "почти-определенности" в науке - миф. Каким образом я мог бы "почти-определенно" доказать, что завтра не опубликуют удивительную новую физическую теорию, опровергающую мои самые неоспоримые допущения относительно реальности? Или то, что я не нахожусь внутри генератора виртуальной реальности? Но я говорю все это не для того, чтобы показать, что научное знание действительно "второсортно". Ибо идея о том, что математика дает определенности - это тоже миф.

С древних времен идея о привилегированном статусе математического знания часто ассоциировалась с идеей о том, что некоторые абстрактные категории, по крайней мере, не просто являются частью структуры реальности, но даже более реальны, чем физический мир. Пифагор считал, что регулярности в природе есть выражение математических отношений между натуральными числами. "Все вещи есть числа" - таков был его девиз. Он не имел это в виду буквально, однако Платон пошел еще дальше и отрицал реальность физического мира вообще. Он считал, что наши мнимые ощущения этого мира ничего не стоят и вводят в заблуждение, и доказывал, что физические объекты и явления, которые мы понимаем, - всего лишь "тени" несовершенных копий их истинных сущностей ("Форм" или "Идей"), существующих в отдельной области, которая и есть истинная реальность. В этой области, кроме всего прочего, существуют Формы чистых чисел, таких, как 1, 2, 3, ... , и Формы математических действий, таких, как сложение и умножение. Мы можем воспринять некоторые тени этих Форм, когда кладем на стол одно яблоко, потом еще одно и видим, что на столе два яблока. Однако яблоки выражают "наличие одного" и "наличие двух" (и, в данном случае, "наличие яблок") несовершенно. Они не являются совершенно идентичными, а потому, в действительности на столе никогда нет двух примеров чего-либо. На это можно возразить, что число два можно также представить, положив на стол два различных объекта. Но и такое представление несовершенно, потому что в этом случае мы должны допустить, что на столе также есть клетки, отпавшие от яблок, пыль и воздух. В отличие от Пифагора. Платон занимался не только натуральными числами. Его реальность содержала Формы всех понятий. Например, она содержала Форму совершенного круга. "Круги", которые мы видим, никогда не являются действительно кругами. Они не совершенно круглые, не совершенно плоские; у них есть конечная толщина и т.д. Все они несовершенны.

Затем Платон указал задачу. Принимая во внимание все это Земное несовершенство (и он мог бы добавить, наш несовершенный сенсорный доступ даже к Земным кругам), как вообще мы можем знать то, что мы знаем о реальных, совершенных кругах? Очевидно, что мы обладаем знанием о них, но каким образом? Где Евклид приобрел знание геометрии, которое выразил в своих знаменитых аксиомах, когда у него не было ни истинных кругов, ни точек, ни прямых? Откуда исходит эта определенность математического доказательства, если никто не способен ощутить те абстрактные категории, на которые оно ссылается? Ответ Платона заключался в том, что мы получаем все это знание не из этого мира теней и иллюзий. Мы получаем его непосредственно из самого мира Форм. Мы обладаем совершенным врожденным знанием того мира, которое, как он считал, забывается при рождении, а затем скрывается под слоями ошибок, вызванных тем, что мы доверяем своим чувствам. Но реальность можно вспомнить, усердно применяя "разум", впоследствии дающий абсолютную определенность, которую никогда не может дать ощущение.

Интересно, кто-нибудь когда-нибудь верил в эту весьма сомнительную фантазию (включая самого Платона, который все-таки был очень компетентным философом, считавшим, что публике стоит говорить благородную ложь)? Тем не менее, поставленная им задача - как мы можем обладать знанием, не говоря уж об определенности, абстрактных категорий - достаточно реальна, а некоторые элементы предложенного им решения с тех пор стали частью общепринятой теории познания. В частности, фактически все математики до сегодняшнего дня без критики принимают основную идею того, что математическое и научное знание проистекают из различных источников и что "особый" источник математического знания дает ему абсолютную определенность. Сейчас этот источник математики называют математической интуицией, однако он играет ту же самую роль, что и "воспоминания" Платона об области Форм.

Математики много и мучительно спорили о том, открытия каких в точности видов совершенно надежного знания можно ожидать от нашей математической интуиции. Другими словами, они согласны, что математическая интуиция - источник абсолютной определенности, но не могут прийти к соглашению относительно того, что она им говорит! Очевидно, что это повод для бесконечных, неразрешимых споров.

Большая часть таких споров неизбежно касалась обоснованности или необоснованности различных методов доказательства. Одно из разногласий было связано с так называемыми "мнимыми" числами. Новые Теоремы об обычных, "вещественных" числах доказывали, обращаясь на промежуточных этапах доказательства к свойствам мнимых чисел. Например, таким образом были доказаны первые теоремы о распределении простых чисел. Однако некоторые математики возражали против мнимых чисел на том основании, что они не реальны. (Современная терминология все еще отражает это старое разногласие даже сейчас, когда мы считаем, что мнимые числа так же реальны, как и "вещественные"). Я полагаю, что учителя в школе говорили этим математикам, что нельзя извлекать квадратный корень из минус одного, и, поэтому они не понимали, почему кто-либо другой может это сделать. Нет сомнения в том, что они называли этот злостный порыв "математической интуицией". Однако другие математики обладали другой интуицией. Они понимали, что такое мнимые числа, и как они согласуются с вещественными. Почему, думали они, человеку не следует определять новые абстрактные категории, имеющие свойства, которые он предпочитает? Безусловно единственным законным основанием запретить это была бы логическая несовместимость требуемых свойств. (Это, по существу, современное мнение, выработанное всеобщими усилиями, математик Джон Хортон Конуэй грубо назвал "Движением Освобождения "Математиков"). Однако общеизвестно, что никто не доказал и то, что обычная арифметика натуральных чисел является самосогласованной.

Подобным разногласиям подверглась и обоснованность использования бесконечных чисел, а также множеств, содержащих бесконечно много элементов, и бесконечно малых величин, используемых при исчислении. Дэвид Гильберт, великий немецкий математик, предоставивший большую часть инфраструктуры как общей теории относительности, так и квантовой теории, заметил, что "математическая литература переполнена бессмыслицами и нелепостями, проистекающими из бесконечности". Некоторые математики, как мы увидим, вовсе отрицали обоснованность рассуждения о бесконечных категориях. Легкий доступ к чистой математике в девятнадцатом веке мало что сделал для разрешения этих разногласий. Напротив, он только усугубил их и породил новые. По мере своего усложнения математическое рассуждение неизбежно удалялось от повседневной интуиции, что возымело два важных противоположных следствия. Во-первых, математики стали более педантичными в отношении доказательств, которые, прежде чем быть принятыми, подвергались все более суровым проверкам на соответствие нормам точности. Но во-вторых, изобрели более мощные методы доказательства, которые не всегда можно было обосновать с помощью существующих методов. И из-за этого часто возникали сомнения, был ли какой-то частный метод доказательства, несмотря на свою самоочевидность, абсолютно безошибочным.

Таким образом, к 1900 году наступил кризис основ математики, который заключался в том, что этих основ не было.

Продолжение следует.
Tags: математика, наука, физика, философия
Subscribe
  • Post a new comment

    Error

    Anonymous comments are disabled in this journal

    default userpic

    Your reply will be screened

    Your IP address will be recorded 

  • 42 comments